Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Sci ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539048

RESUMO

Chromosome instability, a hallmark of lung cancer, is a driving mechanism for hexavalent chromium [Cr(VI)] carcinogenesis in humans. Cr(VI) induces structural and numerical chromosome instability in human lung cells by inducing DNA double strand breaks and inhibiting homologous recombination repair and causing spindle assembly checkpoint (SAC) bypass and centrosome amplification. Great whales are long-lived species with long-term exposures to Cr(VI) and accumulate Cr in their tissue, but a low incidence of cancer. Data show Cr(VI) induces fewer chromosome aberrations in whale cells after acute Cr(VI) exposure suggesting whale cells can evade Cr(VI)-induced chromosome instability. It is unknown if whales evade Cr(VI)-induced chromosome instability. Thus, we tested the hypothesis that whale cells resist Cr(VI)-induced loss of homologous recombination repair activity and increased SAC bypass and centrosome amplification. We found Cr(VI) induces similar amounts of DNA double strand breaks after acute (24 h) and prolonged (120 h) exposures in whale lung cells, but does not inhibit homologous recombination repair, SAC bypass, or centrosome amplification, and does not induce chromosome instability. These data indicate whale lung cells resist Cr(VI)-induced chromosome instability, the major driver for Cr(VI) carcinogenesis at a cellular level, consistent with observations that whales are resistant to cancer.

2.
Biol Trace Elem Res ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38499919

RESUMO

Hexavalent chromium [Cr(VI)] is a known lung carcinogen and a driving mechanism in human lung cells for Cr(VI)-induced lung cancer is chromosome instability, caused by prolonged Cr(VI) exposure inducing DNA double-strand breaks, while simultaneously inhibiting the repair of these breaks. In North Atlantic right whales, Cr(VI) induces breaks but does not inhibit repair. It is unclear if this repair inhibition is specific to human lung cells or occurs in other species, as it has only been considered in humans and North Atlantic right whales. We evaluated these outcomes in rodent cells, as rodents are an experimental model for metal-induced lung carcinogenesis. We used a guinea pig lung fibroblast cell line, JH4 Clone 1, and rat lung fibroblasts. Cells were exposed to two different particulate Cr(VI) compounds, ranging from 0 to 0.5 ug/cm2, for 24 or 120 h and assessed for cytotoxicity, DNA double-strand breaks, and DNA double-strand break repair. Both particulate Cr(VI) compounds induced a concentration-dependent increase in cytotoxicity and DNA double-strand breaks after acute and prolonged exposures. Notably, while the repair of Cr(VI)-induced DNA double-strand breaks increased after acute exposure, the repair of these breaks was inhibited after prolonged exposure. These results are consistent with outcomes in human lung cells indicating rodent cells respond like human cells, while whale cells have a markedly different response.

3.
Toxicol Appl Pharmacol ; 485: 116889, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38479592

RESUMO

Hexavalent chromium [Cr(VI)] is considered a major environmental health concern and lung carcinogen. However, the exact mechanism by which Cr(VI) causes lung cancer in humans remains unclear. Since several reports have demonstrated a role for inflammation in Cr(VI) toxicity, the present study aimed to apply transcriptomics to examine the global mRNA expression in human lung fibroblasts after acute (24 h) or prolonged (72 and 120 h) exposure to 0.1, 0.2 and 0.3 µg/cm2 zinc chromate, with a particular emphasis on inflammatory pathways. The results showed Cr(VI) affected the expression of multiple genes and these effects varied according to Cr(VI) concentration and exposure time. Bioinformatic analysis of RNA-Seq data based on the Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaCore databases revealed multiple inflammatory pathways were affected by Cr(VI) treatment. qRT-PCR data corroborated RNA-Seq findings. This study showed for the first time that Cr(VI) regulates key inflammatory pathways in human lung fibroblasts, providing novel insights into the mechanisms by which Cr(VI) causes lung cancer.

4.
Toxicol Appl Pharmacol ; 479: 116711, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37805091

RESUMO

Hexavalent chromium [Cr(VI)] is a human lung carcinogen with widespread exposure risks. Cr(VI) causes DNA double strand breaks that if unrepaired, progress into chromosomal instability (CIN), a key driving outcome in Cr(VI)-induced tumors. The ability of Cr(VI) to cause DNA breaks and inhibit repair is poorly understood in human lung epithelial cells, which are extremely relevant since pathology data show Cr(VI)-induced tumors originate from bronchial epithelial cells. In the present study, we considered immortalized and primary human bronchial epithelial cells. Cells were treated with zinc chromate at concentrations ranging 0.05 to 0.4µg/cm2 for acute (24 h) and prolonged (120 h) exposures. DNA double strand breaks (DSBs) were measured by neutral comet assay and the status of homologous recombination repair, the main pathway to fix Cr(VI)-induced DSBs, was measured by RAD51 foci formation with immunofluorescence, RAD51 localization with confocal microscopy and sister chromatid exchanges. We found acute and prolonged Cr(VI) exposure induced DSBs. Acute exposure induced homologous recombination repair, but prolonged exposure inhibited it resulting in chromosome instability in immortalized and primary human bronchial epithelial cells.


Assuntos
Cromo , Neoplasias , Humanos , Cromo/toxicidade , Cromo/metabolismo , Pulmão/metabolismo , Instabilidade Cromossômica , Células Epiteliais/metabolismo , Neoplasias/metabolismo , DNA/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
6.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203427

RESUMO

Hexavalent chromium [Cr(VI)] is a known human lung carcinogen with widespread exposure in environmental and occupational settings. Despite well-known cancer risks, the molecular mechanisms of Cr(VI)-induced carcinogenesis are not well understood, but a major driver of Cr(VI) carcinogenesis is chromosome instability. Previously, we reported Cr(VI) induced numerical chromosome instability, premature centriole disengagement, centrosome amplification, premature centromere division, and spindle assembly checkpoint bypass. A key regulator of these events is securin, which acts by regulating the cleavage ability of separase. Thus, in this study we investigated securin disruption by Cr(VI) exposure. We exposed human lung cells to a particulate Cr(VI) compound, zinc chromate, for acute (24 h) and prolonged (120 h) time points. We found prolonged Cr(VI) exposure caused marked decrease in securin levels and function. After prolonged exposure at the highest concentration, securin protein levels were decreased to 15.3% of control cells, while securin mRNA quantification was 7.9% relative to control cells. Additionally, loss of securin function led to increased separase activity manifested as enhanced cleavage of separase substrates; separase, kendrin, and SCC1. These data show securin is targeted by prolonged Cr(VI) exposure in human lung cells. Thus, a new mechanistic model for Cr(VI)-induced carcinogenesis emerges with centrosome and centromere disruption as key components of numerical chromosome instability, a key driver in Cr(VI) carcinogenesis.


Assuntos
Carcinogênese , Cromo , Instabilidade Cromossômica , Humanos , Securina/genética , Separase
7.
Toxicol Appl Pharmacol ; 457: 116294, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283442

RESUMO

Hexavalent chromium [Cr(VI)] is a well-known and widespread environmental contaminant associated with a variety of adverse health effects, in particular lung cancer. The primary route of exposure in humans is through inhalation. Particulate forms of Cr(VI) are the most potent but in vivo studies are difficult. Intratracheal instillation requires highly trained surgical procedures which also limits the number of repeated exposures possible and thus requires high doses. Inhalation studies can deliver lower more chronic doses but are expensive and generate dangerous aerosols. We evaluated an oropharyngeal aspiration exposure route for zinc chromate particles in Wistar rats. Animals were treated once per week for 90 days. We found chromium accumulated in the lungs, blood, and reproductive tissues of all treated animals. Additionally, we found inflammatory indicators in the lung were elevated and circulating lymphocytes had increased chromosomal damage. These results show oropharyngeal aspiration provides a practicable exposure route for chronic and sub-chronic exposures of Cr(VI) particles.

8.
Toxicol Appl Pharmacol ; 455: 116265, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36208701

RESUMO

Besides smoking, lung cancer can be caused by other factors, including heavy metals such as cadmium, nickel, arsenic, beryllium and hexavalent chromium [Cr(VI)], which is used in multiple settings, resulting in widespread environmental and occupational exposures as well as heavy use. The mechanism by which Cr(VI) causes lung cancer is not completely understood. Currently, it is admitted chromosome instability is a key process in the mechanism of Cr(VI)-induced cancer, and previous studies have suggested Cr(VI) impacts the lung tissue in mice by triggering tissue damage and inflammation. However, the mechanism underlying Cr(VI)-induced inflammation and its exact role in lung cancer are unclear. Therefore, this review aimed to systematically examine previous studies assessing Cr(VI)-induced inflammation and to summarize the major inflammatory pathways involved in Cr(VI)-induced inflammation. In cell culture studies, COX2, VEGF, JAK-STAT, leukotriene B4 (LTB4), MAPK, NF-Ò¡B and Nrf2 signaling pathways were consistently upregulated by Cr(VI), clearly demonstrating that these pathways are involved in Cr(VI)-induced inflammation. In addition, Akt signaling was also shown to contribute to Cr(VI)-induced inflammation, although discrepant findings were reported. Few mechanistic studies were performed in animal models, in which Cr(VI) upregulated oxidative pathways, NF-kB signaling and the MAPK pathway in the lung tissue. Similar to cell culture studies, opposite effects of Cr(VI) on Akt signaling were reported. This work provides insights into the mechanisms by which Cr(VI) induces lung inflammation. However, discrepant findings and other major issues in study design, both in cell and animal models, suggest that further studies are required to unveil the mechanism of Cr(VI)-induced inflammation and its role in lung cancer.


Assuntos
Arsênio , Neoplasias Pulmonares , Animais , Camundongos , Berílio/metabolismo , Cádmio/metabolismo , Cromo/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Leucotrieno B4/metabolismo , Pulmão , Neoplasias Pulmonares/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Níquel/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Toxicol Appl Pharmacol ; 438: 115890, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35101437

RESUMO

Hexavalent chromium [Cr(VI)] is a global environmental pollutant and human lung carcinogen. However, the mechanisms of Cr(VI) carcinogenesis are not well defined. Cr(VI)-altered gene expression has been reported in the literature and is implicated in numerous mechanisms of Cr(VI) carcinogenesis. MicroRNAs (miRNAs) play a key role in controlling gene expression and are associated with carcinogenic mechanisms. To date no studies have evaluated global changes in miRNA expression in human cells after Cr(VI) exposure. We used RNA sequencing to evaluate how a particulate Cr(VI) compound (zinc chromate), the most potent form of Cr(VI), alters global miRNA expression after acute (24 h) or prolonged (72 and 120 h) exposure to 0.1, 0.2 and 0.3 µg/cm2 zinc chromate in an immortalized, non-cancerous human lung cell line (WTHBF-6). Particulate Cr(VI) significantly affected expression of miRNAs at all time points and concentrations tested. We also found the number of significantly downregulated miRNAs increased in a time- and concentration-dependent manner and many miRNAs were upregulated after 24 h exposure at the intermediate concentration tested. Pathway analyses of the differentially expressed miRNAs predicted miRNAs target pathways of Cr(VI) carcinogenesis in a time- and concentration-dependent manner. These data are the first to evaluate global changes in miRNA expression in human lung cells after Cr(VI) exposure and indicate miRNAs may play a key role in pathways of Cr(VI) carcinogenesis.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos/toxicidade , Cromo/toxicidade , Pulmão/efeitos dos fármacos , MicroRNAs/genética , Transdução de Sinais/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular , Cromatos/toxicidade , Expressão Gênica/efeitos dos fármacos , Humanos , Transdução de Sinais/genética , Compostos de Zinco/toxicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-37711997

RESUMO

One of the challenges of teaching scientific courses is helping students understand research methods, biological models, and data analysis, which can be especially difficult in classes without a laboratory component. Within the field of toxicology, it is also important for students to understand how living organisms are affected by exposure to toxicants and how these toxicants can impact the ecosystem. Resources focusing on active learning pedagogy are scarce in the field of toxicology compared to other disciplines. In this activity, upper-level students in an introductory toxicology course learn to interpret data from primary literature, draw conclusions about how toxicants, specifically metals, can impact susceptible populations, and understand the One Environmental Health approach. Students work in small groups to answer questions concerning data from a paper and then share their responses with the entire class building their communication skills. The instructor serves as a moderator, allowing the students to work through concepts, intervening only when necessary. This approach enables a deeper level of understanding of content and allows the students to engage actively in the learning process. As such, students think critically through relevant problems and find connections to the real world. This lesson can be adapted for several levels of students and could be modified depending on the objectives of the course.

11.
Sci Total Environ ; 818: 151848, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34822883

RESUMO

An increasing body of evidence implicates high levels of selenium intake in the development of diabetes, although prospective studies remain sparse. We conducted a nested case-control study of 622 diabetes incident cases and 622-age, sex, and follow-up time-matched controls in the prospective Jinchang cohort of 48,001 participants with a median of 5.8 years of follow-up. Inductively coupled plasma mass spectrometry (ICP-MS) was used to measure all 622 case-control pairs' baseline serum levels of selenium (Se), which were then categorized into quartiles based on the frequency distribution among the controls. Multivariable adjusted conditional logistic regression and restricted cubic splines (RCS) models were applied to evaluate independent odds ratios (OR) as estimates for relative risks (RR) of diabetes according to quartiles (Q) of selenium levels. Compared to the lowest quartile (Q1 as reference), significantly greater diabetes risks (with 95% confidence interval) were observed in Q3 (OR = 1.62, 1.17-2.35) and Q4 (OR = 1.79, 1.21-2.64). Sub-analyses showed these increased risks of diabetes by serum levels of Se. appeared to differ by sex, age, BMI status, history of hypertension, and dyslipidemia. Further, application of RSC models showed that serum Se levels between 95 and 120 µg/L were significantly and positively associated with diabetes risk whereas no apparent relation exists when Se levels were under 95 µg/L in this cohort population.


Assuntos
Diabetes Mellitus , Selênio , Estudos de Casos e Controles , Pré-Escolar , Diabetes Mellitus/epidemiologia , Humanos , Razão de Chances , Estudos Prospectivos , Fatores de Risco
12.
Toxicol Sci ; 181(1): 35-46, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33677506

RESUMO

Lung cancer is the leading cause of cancer death; however, the mechanisms of lung carcinogens are poorly understood. Metals, including hexavalent chromium [Cr(VI)], induce chromosome instability, an early event in lung cancer. Failure of homologous recombination repair is a key mechanism for chromosome instability. Particulate Cr(VI) causes DNA double-strand breaks and prolonged exposure impairs homologous recombination targeting a key effector protein in this pathway, RAD51. Reduced RAD51 protein is a key endpoint of particulate Cr(VI) exposure. It is currently unknown how Cr(VI) reduces RAD51 protein. E2F1 is the predominant transcription factor for RAD51. This study sought to identify if E2F1 modulates the RAD51 response to particulate Cr(VI). Particulate Cr(VI) reduced RAD51 protein and mRNA levels but had a minimal effect on RAD51 half-life. E2F1 protein and mRNA were also inhibited by particulate Cr(VI) exposure. To connect these two outcomes, we tested if modulating E2F1 affects RAD51 outcomes after particulate Cr(VI) exposure. E2F1 knockdown inhibited RAD51 nuclear foci formation after acute particulate Cr(VI) exposure. These data indicate reduced RAD51 protein levels after prolonged particulate Cr(VI) exposure are predominantly due to inhibited expression. Particulate Cr(VI) also inhibits E2F1 expression. However, although loss of E2F1 does not modulate RAD51 expression after particulate Cr(VI) exposure, RAD51 nuclear foci formation is inhibited. These findings suggest E2F1 is important for RAD51 localization to double-strand breaks, but not expression after particulate Cr(VI) exposure in human lung cells.


Assuntos
Cromo , Reparo do DNA , Cromo/toxicidade , Fator de Transcrição E2F1/genética , Humanos , Pulmão/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo
13.
Toxicol Sci ; 181(1): 115-124, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33566103

RESUMO

The northern Gulf of Mexico has a long history of polycyclic aromatic hydrocarbon (PAH) contamination from anthropogenic activities, natural oil seepages, and the 2010 Deepwater Horizon explosion and oil spill. The continental shelf of the same area is a known breeding ground for sperm whales (Physeter macrocephalus). To evaluate PAH-DNA damage, a biomarker for potential cancer risk, we compared skin biopsies collected from Gulf of Mexico sperm whales in 2012 with skin biopsies collected from sperm whales in areas of the Pacific Ocean in 1999-2001. All samples were obtained by crossbow and comprised both epidermis and subcutaneous blubber. To evaluate exposure, 7 carcinogenic PAHs were analyzed in lipids extracted from Pacific Ocean sperm whale blubber, pooled by sex, and location. To evaluate PAH-DNA damage, portions of all tissue samples were formalin-fixed, paraffin-embedded, sectioned, and examined for PAH-DNA adducts by immunohistochemistry (IHC) using an antiserum elicited against benzo[a]pyrene-modified DNA, which crossreacts with several high molecular weight carcinogenic PAHs bound to DNA. The IHC showed widespread epidermal nuclear localization of PAH-DNA adducts in the Gulf of Mexico whales (n = 15) but not in the Pacific Ocean whales (n = 4). A standard semiquantitative scoring system revealed significantly higher PAH-DNA adducts in the Gulf of Mexico whales compared to the whales from the Pacific Ocean study (p = .0002).


Assuntos
Poluição por Petróleo , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Animais , Biópsia , Adutos de DNA , Monitoramento Ambiental , Golfo do México , Humanos , Poluição por Petróleo/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Cachalote , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
14.
Sci Total Environ ; 763: 142986, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168243

RESUMO

A fundamental understanding of the impact of petrochemicals and other stressors on marine biodiversity is critical for effective management, restoration, recovery, and mitigation initiatives. As species-specific information on levels of petrochemical exposure and toxicological response are lacking for the majority of marine species, a trait-based assessment to rank species vulnerabilities to petrochemical activities in the Gulf of Mexico can provide a more comprehensive and effective means to prioritize species, habitats, and ecosystems for improved management, restoration and recovery. To initiate and standardize this process, we developed a trait-based framework, applicable to a wide range of vertebrate and invertebrate species, that can be used to rank relative population vulnerabilities of species to petrochemical activities in the Gulf of Mexico. Through expert consultation, 18 traits related to likelihood of exposure, individual sensitivity, and population resilience were identified and defined. The resulting multi-taxonomic petrochemical vulnerability framework can be adapted and applied to a wide variety of species groups and geographic regions. Additional recommendations and guidance on the application of the framework to rank species vulnerabilities under specific petrochemical exposure scenarios, management needs or data limitations are also discussed.


Assuntos
Biodiversidade , Ecossistema , Animais , Golfo do México , Invertebrados , México , Vertebrados
15.
J Trace Elem Med Biol ; 62: 126562, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32570008

RESUMO

BACKGROUND: Hexavalent chromium [Cr(VI)] is a human lung carcinogen and global marine pollutant. High Cr concentrations, resembling the ones observed in occupationally exposed workers, have been observed in fin whales (Balaenoptera physalus) in the Gulf of Maine. This outcome suggests Cr might be disrupting the health of fin whale populations. Indeed, Cr in acute (24 h) exposure does cause toxicity in fin whale cells. However, human cell culture data indicate prolonged exposures (120 h) induce a higher amount of toxicity compared to 24 h exposure due to an inhibition of homologous recombination repair. However, whether prolonged exposure causes similar outcomes in fin whale cells is unknown. OBJECTIVE: Due to the importance of assessing prolonged exposure toxicity, this study focuses on characterizing acute and prolonged exposure of Cr(VI) in male and female fin whale cells. METHODS: Cytotoxicity was measured by the clonogenic assay, also known as colony forming assay, which measures the ability of cells to proliferate and form colonies after the treatment. DNA double strand breaks were analyzed by neutral comet assay. Clastogenicity was measured using the chromosome aberration assay. Intracellular Cr levels were measured with Graphite Furnace Atomic Absorption Spectrometry (GFAAS) with Syngistix Software. RESULTS: In this study, we demonstrate that particulate Cr(VI) induces cytotoxicity and genotoxicity in a treatment-dependent manner after 24 h and 120 h exposures. Cytotoxicity levels were generally low with relative survival above 64 %. DNA double strand break data and chromosome aberration data were elevated after a 24 h exposure, but decreased after a 120 h exposure. While cytotoxicity was similar after 24 h and 120 h exposures, less DNA double strand breaks and chromosomal instability occurred with prolonged exposure. CONCLUSION: Particulate Cr(VI) is cytotoxic and genotoxic to fin whale cells after acute and prolonged exposures. The reduction of genotoxicity we have observed after 120 h exposure may be partly explained by lower intracellular Cr levels after 120 h. However, the decrease in intracellular levels is not reflected by a similar decrease in chromosome aberrations suggesting other mechanisms may be at play. Male fin whale cells appear to be more susceptible to the genotoxic effects of particulate Cr(VI) while female cells are less susceptible possibly due to increased cell death of damaged cells, but more work is needed to clarify if this outcome reflects a sex difference or interindividual variability. Overall, the study shows particulate Cr(VI) does induce toxicity at both acute and prolonged exposures in fin whales cells indicating Cr(VI) exposure is a health risk for this species.


Assuntos
Cromo/toxicidade , Baleia Comum , Poluentes Químicos da Água/toxicidade , Animais , Células Cultivadas , Cromatos/toxicidade , Cromo/farmacocinética , Aberrações Cromossômicas , Ensaio Cometa , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Exposição Ambiental , Feminino , Masculino , Testes de Mutagenicidade/métodos , Testes de Toxicidade Aguda , Compostos de Zinco/toxicidade
17.
Front Environ Sci ; 82020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34765609

RESUMO

Microplastics are ubiquitous pollutants in the marine environment and a health concern. They are generated directly for commercial purposes or indirectly from the breakdown of larger plastics. Examining a toxicological profile for microplastics is a challenge due to their large variety of physico-chemical properties and toxicological behavior. In addition to their concentration, other parameters such as polymer type, size, shape and color are important to consider in their potential toxicity. Microplastics can adsorb pollutants such as polycyclic aromatic hydrocarbons (PAHs) or metals on their surface and are likely to contain plastic additives that add to their toxicity. The observations of microplastics in seafood increased concern for potential human exposure. Since literature considering microplastics in humans is scarce, using a One Environmental Health approach can help better inform about potential human exposures. Marine mammals and sea turtles are long-lived sentinel species regularly used for biomonitoring the health status of the ocean and share trophic chain and habitat with humans. This review considers the available research regarding microplastic and plastic fiber exposures in humans, marine mammals and turtles. Overall, across the literature, the concentration of microplastics, size, color, shape and polymer types found in GI tract and feces from sea turtles, marine mammals and humans are similar, showing that they might be exposed to the same microplastics profile. Additionally, even if ingestion is a major route of exposure due to contaminated food and water, dermal and inhalation studies in humans have provided data showing that these exposures are also health concerns and more effort on these routes of exposures is needed. In vitro studies looked at a variety of endpoints showing that microplastics can induce immune response, oxidative stress, cytotoxicity, alter membrane integrity and cause differential expression of genes. However, these studies only considered three polymer types and short-term exposures, whereas, due to physiological relevance, prolonged exposures might be more informative.

18.
Toxicol Appl Pharmacol ; 376: 70-81, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31108106

RESUMO

Evaluating health risks of environmental contaminants can be better achieved by considering toxic impacts across species. Hexavalent chromium [Cr(VI)] is a marine pollutant and global environmental contaminant. While Cr(VI) has been identified as a human lung carcinogen, health effects in marine species are poorly understood. Little is known about how Cr(VI) might impact humans and marine species differently. This study used a One Environmental Health Approach to compare the cytotoxicity and genotoxicity of particulate Cr(VI) in human and leatherback sea turtle (Dermochelys coriacea) lung fibroblasts. Leatherbacks may experience prolonged exposures to environmental contaminants and provide insight to how environmental exposures affect health across species. Since humans and leatherbacks may experience prolonged exposure to Cr(VI), and prolonged Cr(VI) exposure leads to carcinogenesis in humans, in this study we considered both acute and prolonged exposures. We found particulate Cr(VI) induced cytotoxicity in leatherback cells comparable to human cell data supporting current research that shows Cr(VI) impacts health across species. To better understand mechanisms of Cr(VI) toxicity we assessed the genotoxic effects of particulate Cr(VI) in human and leatherback cells. Particulate Cr(VI) induced similar genotoxicity in both cell lines, however, human cells arrested at lower concentrations than leatherback cells. We also measured intracellular Cr ion concentrations and found after prolonged exposure human cells accumulated more Cr than leatherback cells. These data indicate Cr(VI) is a health concern for humans and leatherbacks. The data also suggest humans and leatherbacks respond to chemical exposure differently, possibly leading to the discovery of species-specific protective mechanisms.


Assuntos
Carcinógenos Ambientais/toxicidade , Cromo/toxicidade , Saúde Ambiental , Pulmão/efeitos dos fármacos , Mutagênicos/toxicidade , Tartarugas , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromo/metabolismo , Aberrações Cromossômicas/induzido quimicamente , Dano ao DNA/efeitos dos fármacos , Exposição Ambiental , Saúde Ambiental/métodos , Fibroblastos/efeitos dos fármacos , Humanos , Pulmão/metabolismo , Especificidade da Espécie , Fatores de Tempo , Poluentes Químicos da Água
19.
Toxicol Appl Pharmacol ; 376: 58-69, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078588

RESUMO

Marine metal pollution is an emerging concern for human, animal, and ecosystem health. We considered metal pollution in the Sea of Cortez, which is a relatively isolated sea rich in biodiversity. Here there are potentially significant anthropogenic inputs of pollution from agriculture and metal mining. We considered the levels of 23 heavy metals and selenium in seven distinct cetacean species found in the area. Our efforts considered two different periods of time: 1999 and 2016/17. We considered the metal levels in relation to (1) all species together across years, (2) differences between suborders Odontoceti and Mysticeti, (3) each species individually across years, and (4) gender differences for each of these comparisons. We further compared metal levels found in sperm whale skin samples collected during these voyages to a previous voyage in 1999, to assess changes in metal levels over a longer timescale. The metals Mg, Fe, Al, and Zn were found at the highest concentrations across all species and all years. For sperm whales, we observed decreased metal levels from 1999 to 2016/2017, except for iron (Fe), nickel (Ni), and chromium (Cr), which either increased or did not change during this time period. These results indicate a recent change in the metal input to the Sea of Cortez, which may indicate a decreased concern for human, animal, and ecosystem health for some metals, but raises concern for the genotoxic metals Cr and Ni. This work was supported by NIEHS grant ES016893 (J.P.W.) and numerous donors to the Wise Laboratory.


Assuntos
Cetáceos/metabolismo , Saúde Ambiental/métodos , Metais Pesados/análise , Poluição Química da Água/análise , Animais , Balaenoptera/metabolismo , Feminino , Jubarte/metabolismo , Masculino , Metais Pesados/toxicidade , Oceano Pacífico , Selênio/análise , Selênio/toxicidade , Fatores Sexuais , Pele/química , Especificidade da Espécie , Cachalote/metabolismo , Fatores de Tempo , Poluentes Químicos da Água , Poluição Química da Água/efeitos adversos , Baleias Piloto/metabolismo
20.
Environ Mol Mutagen ; 60(1): 29-41, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30307653

RESUMO

Carcinogenic polycyclic aromatic hydrocarbons (PAHs) were disposed directly into the Saguenay River of the St. Lawrence Estuary (SLE) by local aluminum smelters (Quebec, Canada) for 50 years (1926-1976). PAHs in the river sediments are likely etiologically related to gastrointestinal epithelial cancers observed in 7% of 156 mature (>19-year old) adult beluga found dead along the shorelines. Because DNA adduct formation provides a critical link between exposure and cancer induction, and because PAH-DNA adducts are chemically stable, we hypothesized that SLE beluga intestine would contain PAH-DNA adducts. Using an antiserum specific for DNA modified with several carcinogenic PAHs, we stained sections of paraffin-embedded intestine from 51 SLE beluga (0-63 years), 4 Cook Inlet (CI) Alaska beluga (0-26 years), and 20 beluga (0-46 years) living in Arctic areas (Eastern Beaufort Sea, Eastern Chukchi Sea, Point Lay Alaska) and aquaria, all with low PAH contamination. Stained sections showed nuclear light-to-dark pink color indicating the presence of PAH-DNA adducts concentrated in intestinal crypt epithelial lining cells. Scoring of whole tissue sections revealed higher values for the 51 SLE beluga, compared with the 20 Arctic and aquarium beluga (P = 0.003). The H-scoring system, applied to coded individual photomicrographs, confirmed that SLE beluga and CI beluga had levels of intestinal PAH-DNA adducts significantly higher than Arctic and aquarium beluga (P = 0.003 and 0.02, respectively). Furthermore, high levels of intestinal PAH-DNA adducts in four SLE beluga with gastrointestinal cancers, considered as a group, support a link of causality between PAH exposure and intestinal cancer in SLE beluga. Environ. Mol. Mutagen. 60:29-41, 2019. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Carcinogênese/induzido quimicamente , Adutos de DNA/toxicidade , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/patologia , Neoplasias Gastrointestinais/etiologia , Neoplasias Gastrointestinais/patologia , Mucosa Intestinal/patologia , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Animais , Regiões Árticas , Beluga , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Mucosa Intestinal/citologia , Camundongos , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...